

 Navigation

 	
 index

 	jitpy 0.1 documentation

Welcome to jitpy’s documentation!

What it jitpy?

jitpy is a hack to embed PyPy [http://pypy.org/] inside CPython: the goal is to let PyPy optimize
selected functions and call them from CPython. The provided interface is
limited: you can pass only simple builtin immutable types and numpy
arrays. In other words, you cannot pass lists, dicts, and instances of custom
classes.

The usage pattern is similar to numba [http://numba.pydata.org/], though it does have very different
characteristics. A simple example

from jitpy import setup
setup('<path-to-pypy-home>')
from jitpy.wrapper import jittify

@jittify([int, float], float)
def func(count, no):
 s = 0
 for i in range(count):
 s += no
 return s

func(100000, 1.2)

This function will be executed by the underlying PyPy, thus yielding a
significant speed benefit (around 50x in my own measurements).

Motivation

The idea behind jitpy is to lower the barrier of entry to PyPy. A lot
of people have complicated dependencies that don’t work under PyPy, yet
they want some way to speed up numeric computations. This is where jitpy
comes to play.

Installing

You can install jitpy using pip install jitpy in your CPython
installation..

You also need to download and unpack a very recent PyPy (newer than 2nd of Dec
2014), which can be e.g. downloaded from PyPy nightlies [http://buildbot.pypy.org/nightly/trunk/].

An example of usage:

Download 64bit binary [http://buildbot.pypy.org/nightly/trunk/pypy-c-jit-74798-f1b314da580e-linux64.tar.bz2] or 32bit binary [http://buildbot.pypy.org/nightly/trunk/pypy-c-jit-74798-f1b314da580e-linux.tar.bz2] for linux:

~$ wget http://buildbot.pypy.org/nightly/trunk/pypy-c-jit-74798-f1b314da580e-linux64.tar.bz2
~$ tar xjf pypy-c-jit-74798-f1b314da580e-linux64.tar.bz2
~$ export PYPY_HOME=`pwd`/pypy-c-jit-74798-f1b314da580e-linux64/bin/
~$ pip install jitpy

And you should be able to run examples (NOTE: since jitpy takes source
code via inspect module, you can’t run jittify on functions typed
from python interactive prompt)

Using jitpy

jitpy is not magic - what it does is to move code across the boundary
between the two different Python implementations. It means that while PyPy and
CPython don’t share any data, you can pass ints, floats, strings
and numpy arrays without copying, since it’s done in-process. It’s also
faster compared to out-of-process solutions, like multiprocessing.
However, one needs to remember
that the global state and the namespaces of the two interpreters are separate,
which means that the functions and classes declared on CPython won’t be
automatically available in PyPy, and viceversa. Moreover, if you import the
same module in both interpreters, the module will be actually imported twice,
which can make a difference in case of modules which have side-effects when
imported.

The API looks like this:

	jitpy.setup(pypy_home=None) - has to be called before anything in order to
point to the correct PyPy build directory. pypy_home points to the
directory of pypy checkout/installation. If None is passed, it’ll default
to PYPY_HOME environment variable.

	jitpy.wrapper.jittify(argtypes, restype=None) - a wrapper that’s passed
argument types as a list and restype as on of the:

	int, float, string - immutable types. Additionally None can
be used for return type

	'array' - a numpy array, can only be used as an argument, not a return
value. Also only simple types are supported for now (no compound dtypes,
no string, unicode) or object dtypes

	jitpy.extra_source(source) - executes source inside PyPy. The
classes and functions defined there will be visible by the functions
decorated with @jittify. For example:

jitpy.extra_source("""
class X:
 def __init__(self, x):
 self.x = x
""")

class Y(object):
 pass

@jitpy.wrapper.jittify([], int)
def func():
 return X(42).x

func()

this will work, however trying to reference Y from inside the func
will result in a NameError exception.

Differently than numba, you can use all Python constructs inside jitted
functions, including the most dynamic ones like import, pdb,
sys._getframe, ex ec, etc. However note that sys.path is not
inherited: if you want to include extra directories in sys.path, you need
to modify it explicitly using jitpy.extra_source.

Limitations

The API is limited to builtin types, because it’s easy to see how the boundary
looks like. Numpy arrays can be shared, because the data is visible as a pointer
in C on the low level. sys.path has to be initialized separately, but will
respect all the libraries installed in the underlying pypy.

Benchmarks

Everyone loves benchmarks. The way one presents benchmarks is very important.
I’m going to compare on a limited set of benchmarks various tools designed
for a specific purpose – speeding up Python in pieces or in whole without
learning a new language. That means that tools like Cython, C, Fortran are
out of scope of this comparison. I’m going to compare CPython, jitpy, numba
and to some extent PyPy.

The basic benchmark [https://github.com/fijal/jitpy/blob/master/benchmarks/basic.py] measures the overhead of calling through the layer.
The first example is empty function, the second loops ten times to do
three additions, in order to run any python code.

	benchmark
	pure python
	jitpy
	numba

	return 1
	0.09s (1.0x)
	0.58s (6.4x slower)
	0.36s (4x slower)

	loop 10
	0.95s (1.0x)
	0.8s (1.2x faster)
	0.39s (2.4x faster)

While this is an interesting data point, this generally points out you should not
write very tiny functions using those layers, but as soon as there is any
work done, CPython is just very slow. For a comparison, running those benchmarks
under PyPy gives, respectively, 0.003s (30x speedup) and 0.11s (8.6x speedup),
which means
that if you have a high granularity of functions that can’t be nicely separated,
a wholesome solution like PyPy gives more benefits.

The array benchmark [https://github.com/fijal/jitpy/blob/master/benchmarks/array.py] gives insight into passing arrays into the functions
and doing more advanced things. The benchmarks do, in order:

	pass 1d array, walk it for a sum (equivalent to sum(a))

	pass 2d array, walk it for a sum (equivalent to sum(a))

	pass 2d array, walk it, create tuple of size two and count the length

	pass 2d array, walk it, create an instance of a class and read it’s attribute

Benchmarks grow in complexity as what sort of stuff is done in them (and also
grow in silliness). Results are as follows. Notes:

	we do 10x less iterations with CPython just because of how bloody slow it is

	because we don’t cross boundary much, the numbers for jitpy should be
very similar to what you would get running pure PyPy

	benchmark
	pure python
	jitpy
	numba

	1d array
	12.7s (1.0x)
	0.28s (45x faster)
	0.21s (60x faster)

	2d array
	16s (1.0x)
	0.35s (46x faster)
	0.22s (73x faster)

	2d + tuple
	33.5s (1.0x)
	0.30s (104x faster)
	64.5s (1.9x slower)

	2d + instance
	48.4s (1.0x)
	0.30s (161x faster)
	53.9s (1.1x slower)

The benchmark results might look very confusing, but here are my takeaways:

	CPython is slow at numerics

	if everything is perfect for numba to emit optimize LLVM code, LLVM does a
very good job

	PyPy (and jitpy) is slightly to moderately slower than numba for simple cases

	PyPy (and jitpy) is vastly better for complicated cases that involve more
of Python semantics.

After all, it makes sense - numba is a specific tool that does not try
to be fast on all Python code, while PyPy runs all Python code and tries
to be fast on it.

PyPy (and jitpy) also supports more of Python (in fact all), so it’s possible
to get tracebacks, try:, except: clauses, imports etc. etc.
that are simply not supported by numba.

However, your mileage may vary, try tools before jumping into conclusions.

	Index

	Search Page

 Copyright 2014, Maciej Fijałkowski.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	jitpy 0.1 documentation

Index

 Copyright 2014, Maciej Fijałkowski.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		jitpy 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Maciej Fijałkowski.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

